Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(20): 4196-4208, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37556118

RESUMO

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with low response rates to frontline PD-1 blockade. Natural killer (NK) cells are a promising cellular therapy for T cell therapy-refractory cancers, but are frequently dysfunctional in patients with HNSCC. Strategies are needed to enhance NK cell responses against HNSCC. We hypothesized that memory-like (ML) NK cell differentiation, tumor targeting with cetuximab, and engineering with an anti-EphA2 (Erythropoietin-producing hepatocellular receptor A2) chimeric antigen receptor (CAR) enhance NK cell responses against HNSCC. EXPERIMENTAL DESIGN: We generated ML NK and conventional (c)NK cells from healthy donors, then evaluated their ability to produce IFNγ, TNF, degranulate, and kill HNSCC cell lines and primary HNSCC cells, alone or in combination with cetuximab, in vitro and in vivo using xenograft models. ML and cNK cells were engineered to express anti-EphA2 CAR-CD8A-41BB-CD3z, and functional responses were assessed in vitro against HNSCC cell lines and primary HNSCC tumor cells. RESULTS: Human ML NK cells displayed enhanced IFNγ and TNF production and both short- and long-term killing of HNSCC cell lines and primary targets, compared with cNK cells. These enhanced responses were further improved by cetuximab. Compared with controls, ML NK cells expressing anti-EphA2 CAR had increased IFNγ and cytotoxicity in response to EphA2+ cell lines and primary HNSCC targets. CONCLUSIONS: These preclinical findings demonstrate that ML differentiation alone or coupled with either cetuximab-directed targeting or EphA2 CAR engineering were effective against HNSCCs and provide the rationale for investigating these combination approaches in early phase clinical trials for patients with HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Receptores de Antígenos Quiméricos , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Células Matadoras Naturais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Anticorpos Monoclonais/metabolismo , Diferenciação Celular
2.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279078

RESUMO

Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.


Assuntos
Imunidade Inata , Proteínas com Domínio T , Humanos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Matadoras Naturais/metabolismo , Fatores de Transcrição/metabolismo , Citocinas/metabolismo
3.
Blood ; 141(26): 3153-3165, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37130030

RESUMO

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.


Assuntos
Linfoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos , Linfócitos T , Linfoma/etiologia , Antígenos CD19
4.
Aging Cell ; 22(5): e13806, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967480

RESUMO

Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-ß and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet ß cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Camundongos , Animais , Senescência Celular/genética , Envelhecimento , Inflamação , Imunoterapia , Fenótipo
5.
Blood ; 141(8): 856-868, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36416736

RESUMO

Interest in adoptive cell therapy for treating cancer is exploding owing to early clinical successes of autologous chimeric antigen receptor (CAR) T lymphocyte therapy. However, limitations using T cells and autologous cell products are apparent as they (1) take weeks to generate, (2) utilize a 1:1 donor-to-patient model, (3) are expensive, and (4) are prone to heterogeneity and manufacturing failures. CAR T cells are also associated with significant toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and prolonged cytopenias. To overcome these issues, natural killer (NK) cells are being explored as an alternative cell source for allogeneic cell therapies. NK cells have an inherent ability to recognize cancers, mediate immune functions of killing and communication, and do not induce graft-versus-host disease, cytokine release syndrome, or immune effector cell-associated neurotoxicity syndrome. NK cells can be obtained from blood or cord blood or be derived from hematopoietic stem and progenitor cells or induced pluripotent stem cells, and can be expanded and cryopreserved for off-the-shelf availability. The first wave of point-of-care NK cell therapies led to the current allogeneic NK cell products being investigated in clinical trials with promising preliminary results. Basic advances in NK cell biology and cellular engineering have led to new translational strategies to block inhibition, enhance and broaden target cell recognition, optimize functional persistence, and provide stealth from patients' immunity. This review details NK cell biology, as well as NK cell product manufacturing, engineering, and combination therapies explored in the clinic leading to the next generation of potent, off-the-shelf cellular therapies for blood cancers.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Síndrome da Liberação de Citocina , Células Matadoras Naturais , Neoplasias/terapia
6.
Mol Ther Oncolytics ; 24: 585-596, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284622

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphoid cells that are emerging as a cellular immunotherapy for various malignancies. NK cells are particularly dependent on interleukin (IL)-15 for their survival, proliferation, and cytotoxic function. NK cells differentiate into memory-like cells with enhanced effector function after a brief activation with IL-12, IL-15, and IL-18. N-803 is an IL-15 superagonist composed of an IL-15 mutant (IL-15N72D) bound to the sushi domain of IL-15Rα fused to the Fc region of IgG1, which results in physiological trans-presentation of IL-15. Here, we describe the creation of a novel triple-cytokine fusion molecule, 18/12/TxM, using the N-803 scaffold fused to IL-18 via the IL-15N72D domain and linked to a heteromeric single-chain IL-12 p70 by the sushi domain of the IL-15Rα. This molecule displays trispecific cytokine activity through its binding and signaling through the individual cytokine receptors. Compared with activation with the individual cytokines, 18/12/TxM induces similar short-term activation and memory-like differentiation of NK cells on both the transcriptional and protein level and identical in vitro and in vivo anti-tumor activity. Thus, N-803 can be modified as a functional scaffold for the creation of cytokine immunotherapies with multiple receptor specificities to activate NK cells for adoptive cellular therapy.

7.
Sci Transl Med ; 14(633): eabm1375, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196021

RESUMO

Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Imunidade Inata , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia
8.
Blood ; 139(11): 1670-1683, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871371

RESUMO

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Criança , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Células Matadoras Naturais , Leucemia Mieloide Aguda/terapia , Transplante Homólogo , Doadores não Relacionados
9.
Blood ; 139(13): 1999-2010, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34780623

RESUMO

New therapies are needed for patients with relapsed/refractory (rel/ref) diffuse large B-cell lymphoma (DLBCL) who do not benefit from or are ineligible for stem cell transplant and chimeric antigen receptor therapy. The CD30-targeted, antibody-drug conjugate brentuximab vedotin (BV) and the immunomodulator lenalidomide (Len) have demonstrated promising activity as single agents in this population. We report the results of a phase 1/dose expansion trial evaluating the combination of BV/Len in rel/ref DLBCL. Thirty-seven patients received BV every 21 days, with Len administered continuously for a maximum of 16 cycles. The maximum tolerated dose of the combination was 1.2 mg/kg BV with 20 mg/d Len. BV/Len was well tolerated with a toxicity profile consistent with their use as single agents. Most patients required granulocyte colony-stimulating factor support because of neutropenia. The overall response rate was 57% (95% CI, 39.6-72.5), complete response rate, 35% (95% CI, 20.7-52.6); median duration of response, 13.1 months; median progression-free survival, 10.2 months (95% CI, 5.5-13.7); and median overall survival, 14.3 months (95% CI, 10.2-35.6). Response rates were highest in patients with CD30+ DLBCL (73%), but they did not differ according to cell of origin (P = .96). NK cell expansion and phenotypic changes in CD8+ T-cell subsets in nonresponders were identified by mass cytometry. BV/Len represents a potential treatment option for patients with rel/ref DLBCL. This combination is being further explored in a phase 3 study (registered on https://clinicaltrials.org as NCT04404283). This trial was registered on https://clinicaltrials.gov as NCT02086604.


Assuntos
Brentuximab Vedotin , Lenalidomida , Linfoma Difuso de Grandes Células B , Brentuximab Vedotin/efeitos adversos , Humanos , Imunoconjugados/efeitos adversos , Lenalidomida/efeitos adversos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Resultado do Tratamento
10.
Blood ; 139(8): 1177-1183, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34797911

RESUMO

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Assuntos
Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Interleucina-15/administração & dosagem , Células Matadoras Naturais/transplante , Leucemia Mieloide Aguda , Proteínas Recombinantes de Fusão/administração & dosagem , Células Alógenas/imunologia , Feminino , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Masculino
11.
Cancer Immunol Res ; 9(9): 1071-1087, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244297

RESUMO

Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.


Assuntos
Interleucina-12/farmacologia , Interleucina-15/farmacologia , Interleucina-18/farmacologia , Células Matadoras Naturais/imunologia , Leucemia/terapia , Animais , Linhagem Celular Tumoral , Humanos , Memória Imunológica/efeitos dos fármacos , Leucemia/imunologia , Camundongos , Receptores de Células Matadoras Naturais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Indução de Remissão , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 27(17): 4859-4869, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187852

RESUMO

PURPOSE: Treatment of advanced melanoma is a clinical challenge. Natural killer (NK) cells are a promising cellular therapy for T cell-refractory cancers, but are frequently deficient or dysfunctional in patients with melanoma. Thus, new strategies are needed to enhance NK-cell antitumor responses. Cytokine-induced memory-like (ML) differentiation overcomes many barriers in the NK-cell therapeutics field, resulting in potent cytotoxicity and enhanced cytokine production against blood cancer targets. However, the preclinical activity of ML NK against solid tumors remains largely undefined. EXPERIMENTAL DESIGN: Phenotypic and functional alterations of blood and advanced melanoma infiltrating NK cells were evaluated using mass cytometry. ML NK cells from healthy donors (HD) and patients with advanced melanoma were evaluated for their ability to produce IFNγ and kill melanoma targets in vitro and in vivo using a xenograft model. RESULTS: NK cells in advanced melanoma exhibited a decreased cytotoxic potential compared with blood NK cells. ML NK cells differentiated from HD and patients with advanced melanoma displayed enhanced IFNγ production and cytotoxicity against melanoma targets. This included ML differentiation enhancing melanoma patients' NK-cell responses against autologous targets. The ML NK-cell response against melanoma was partially dependent on the NKG2D- and NKp46-activating receptors. Furthermore, in xenograft NSG mouse models, human ML NK cells demonstrated superior control of melanoma, compared with conventional NK cells. CONCLUSIONS: Blood NK cells from allogeneic HD or patients with advanced melanoma can be differentiated into ML NK cells for use as a novel immunotherapeutic treatment for advanced melanoma, which warrants testing in early-phase clinical trials.


Assuntos
Diferenciação Celular/imunologia , Memória Imunológica , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Animais , Humanos , Camundongos , Células Tumorais Cultivadas
13.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33986022

RESUMO

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Assuntos
Anticorpos Biespecíficos , Imunoterapia , Células Matadoras Naturais , Leucemia , Linfoma , Humanos , Anticorpos Biespecíficos/uso terapêutico , Sangue/efeitos dos fármacos , Sangue/imunologia , Células Cultivadas , Terapia Combinada , Citocinas/farmacologia , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/imunologia , Imunoterapia/métodos , Antígeno Ki-1/imunologia , Células Matadoras Naturais/imunologia , Leucemia/terapia , Linfoma/terapia , Receptores de IgG/imunologia
14.
Clin Cancer Res ; 27(12): 3339-3350, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33832946

RESUMO

PURPOSE: N-803 is an IL15 receptor superagonist complex, designed to optimize in vivo persistence and trans-presentation, thereby activating and expanding natural killer (NK) cells and CD8+ T cells. Monoclonal antibodies (mAbs) direct Fc receptor-bearing immune cells, including NK cells, to recognize and eliminate cancer targets. The ability of IL15R agonists to enhance tumor-targeting mAbs in patients has not been reported previously. PATIENTS AND METHODS: Relapsed/refractory patients with indolent non-Hodgkin lymphoma were treated with rituximab and intravenous or subcutaneous N-803 on an open-label, dose-escalation phase I study using a 3+3 design (NCT02384954). Primary endpoint was maximum tolerated dose. Immune correlates were performed using multidimensional analysis via mass cytometry and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) which simultaneously measures protein and single-cell RNA expression. RESULTS: This immunotherapy combination was safe and well tolerated and resulted in durable clinical responses including in rituximab-refractory patients. Subcutaneous N-803 plus rituximab induced sustained proliferation, expansion, and activation of peripheral blood NK cells and CD8 T cells, with increased NK cell and T cells present 8 weeks following last N-803 treatment. CITE-seq revealed a therapy-altered NK cell molecular program, including enhancement of AP-1 transcription factor. Furthermore, the monocyte transcriptional program was remodeled with enhanced MHC expression and antigen-presentation genes. CONCLUSIONS: N-803 combines with mAbs to enhance tumor targeting in patients, and warrants further investigation in combination with immunotherapies.


Assuntos
Interleucina-15 , Linfoma não Hodgkin , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linfócitos T CD8-Positivos/patologia , Humanos , Interleucina-15/uso terapêutico , Linfoma não Hodgkin/patologia , Proteínas Recombinantes de Fusão , Rituximab
15.
STAR Protoc ; 2(1): 100262, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490978

RESUMO

Direct killing of diseased cells is a hallmark function of NK cells. This protocol describes a flow-based assay to measure in vivo activated murine NK cells' ability to kill target cells ex vivo. Existing published protocols for assaying ex vivo NK cell killing utilized the radioactive chromium release assay or were designed for human NK cells. This protocol details specifically an ex vivo cytotoxicity assay using primary murine NK cells enriched from splenocytes that were activated in vivo with poly(I:C). For complete details on the use and execution of this protocol, please refer to Wagner et al. (2020).


Assuntos
Testes Imunológicos de Citotoxicidade , Citotoxicidade Imunológica , Citometria de Fluxo , Células Matadoras Naturais , Baço , Animais , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Camundongos , Baço/citologia , Baço/imunologia
16.
Semin Hematol ; 57(4): 185-193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33256911

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphoid cells that protect the host from infection and mediate anti-tumor responses. Classically considered part of the innate immune system, NK cells were previously thought to not possess the specificity or enhanced recall responses associated with adaptive T and B lymphocytes. However, a large body of work has transformed these long-held divisions between innate and adaptive immunity; NK cell memory and memory-like responses are clearly established after hapten exposure, viral infection, and combined cytokine activation. These advances come with opportunities to translate innate NK cell recall responses into the clinic as cancer immunotherapy. Here, we review our current understanding of the heterogeneity of memory and memory-like NK cell responses, with distinct formation, molecular biology, and memory type functions. We elaborate on cytokine-induced memory-like NK cells and highlight their application as adoptive immunotherapy for cancer, and as a platform for engineering optimal NK cell anti-tumor responses.


Assuntos
Imunidade Adaptativa/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Humanos , Neoplasias/imunologia
17.
Cancer Discov ; 10(12): 1854-1871, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32826231

RESUMO

Natural killer (NK) cells are an emerging cancer cellular therapy and potent mediators of antitumor immunity. Cytokine-induced memory-like (ML) NK cellular therapy is safe and induces remissions in patients with acute myeloid leukemia (AML). However, the dynamic changes in phenotype that occur after NK-cell transfer that affect patient outcomes remain unclear. Here, we report comprehensive multidimensional correlates from ML NK cell-treated patients with AML using mass cytometry. These data identify a unique in vivo differentiated ML NK-cell phenotype distinct from conventional NK cells. Moreover, the inhibitory receptor NKG2A is a dominant, transcriptionally induced checkpoint important for ML, but not conventional NK-cell responses to cancer. The frequency of CD8α+ donor NK cells is negatively associated with AML patient outcomes after ML NK therapy. Thus, elucidating the multidimensional dynamics of donor ML NK cells in vivo revealed critical factors important for clinical response, and new avenues to enhance NK-cell therapeutics. SIGNIFICANCE: Mass cytometry reveals an in vivo memory-like NK-cell phenotype, where NKG2A is a dominant checkpoint, and CD8α is associated with treatment failure after ML NK-cell therapy. These findings identify multiple avenues for optimizing ML NK-cell immunotherapy for cancer and define mechanisms important for ML NK-cell function.This article is highlighted in the In This Issue feature, p. 1775.


Assuntos
Imunoterapia Adotiva/métodos , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/genética , Humanos , Leucemia Mieloide Aguda/patologia
18.
Blood ; 136(20): 2308-2318, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32614951

RESUMO

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12), IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions in patients with leukemia. However, many cancers are not fully recognized via NK cell receptors. Chimeric antigen receptors (CARs) have been used to enhance tumor-specific recognition by effector lymphocytes. We hypothesized that ML differentiation and CAR engineering would result in complementary improvements in NK cell responses against NK-resistant cancers. To test this idea, peripheral blood ML NK cells were modified to express an anti-CD19 CAR (19-CAR-ML), which displayed significantly increased interferon γ production, degranulation, and specific killing against NK-resistant lymphoma lines and primary targets compared with nonspecific control CAR-ML NK cells or conventional CAR NK cells. The 19-CAR and ML responses were synergistic and CAR specific and required immunoreceptor tyrosine-based activation motif signaling. Furthermore, 19-CAR-ML NK cells generated from lymphoma patients exhibited improved responses against their autologous lymphomas. 19-CAR-ML NK cells controlled lymphoma burden in vivo and improved survival in human xenograft models. Thus, CAR engineering of ML NK cells enhanced responses against resistant cancers and warrants further investigation, with the potential to broaden ML NK cell recognition against a variety of NK cell-resistant tumors.


Assuntos
Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Linfoma/imunologia , Receptores de Antígenos Quiméricos , Animais , Citotoxicidade Imunológica/imunologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510326

RESUMO

Human natural killer (NK) cells are defined as CD56+CD3-. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.


The immune system deploys different cell types to take out cancer cells. True to their name, one type of immune cell known as natural killer cells kills tumor target cells by releasing toxic proteins that kill the harmful cells. In humans, these immune cells are defined, among other things, by the presence of a protein called CD56 on their cell surface. This protein (which is also known as NCAM) is thought to help cells to stick to their surroundings and control their movements. However, it was not clear whether CD56 also plays a role in the destructive abilities of natural killer cells. Gunesch et al. have now looked to see what would happen if natural killer cells lacked CD56 on their surface. The experiments included deleting the gene for CD56 from two kinds of human natural killer cell that are commonly grown in the laboratory (called NK92 and YTS). In both cases, the cells lacking CD56 killed fewer cancer cells than the unedited natural killer cells. The NK92 cells were much more affected by the loss of CD56 than the YTS cells, and after Gunesch et al. compared the two kinds of cell they identified another protein called Pyk2 as the potential reason behind the difference. The Pyk2 protein is known to help a natural killer cell latch onto target cancer cells and release its toxic proteins. To do this, Pyk2 must first be activated with phosphate groups via a process known as phosphorylation. Gunesch et al. showed that Pyk2 protein in unedited NK92 cells was more highly phosphorylated than those of the YTS cells, and that Pyk2 activation by phosphorylation was greatly decreased in NK92 cells when the gene for CD56 was deleted. Together these and other results suggest that CD56 on natural killer cells helps to promote Pyk2 to activate the cells' cancer-killing abilities through Pyk2 phosphorylation, especially in NK92 cells. These findings open up new lines of investigation into the relationship between sticky surface proteins and the activation of immune cells. They may also have important implications for the use of the immune system to treat cancer via immunotherapy.


Assuntos
Antígeno CD56/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Células Matadoras Naturais/fisiologia , Antígeno CD56/genética , Linhagem Celular , Sobrevivência Celular , Quinase 2 de Adesão Focal/genética , Deleção de Genes , Regulação da Expressão Gênica , Humanos
20.
Cell Rep ; 31(9): 107720, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492428

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphoid cells (ILCs) that mediate antiviral and antitumor responses and require the transcriptional regulator Eomesodermin (Eomes) for early development. However, the role of Eomes and its molecular program in mature NK cell biology is unclear. To address this, we develop a tamoxifen-inducible, type-1-ILC-specific (Ncr1-targeted) cre mouse and combine this with Eomes-floxed mice. Eomes deletion after normal NK cell ontogeny results in a rapid loss of NK cells (but not ILC1s), with a particularly profound effect on penultimately mature stage III NK cells. Mechanisms responsible for stage III reduction include increased apoptosis and impaired maturation from stage II precursors. Induced Eomes deletion also decreases NK cell cytotoxicity and abrogates in vivo rejection of major histocompatibility complex (MHC)-class-I-deficient cells. However, other NK cell functional responses, and stage IV NK cells, are largely preserved. These data indicate that mature NK cells have distinct Eomes-dependent and -independent stages.


Assuntos
Células Matadoras Naturais/imunologia , Proteínas com Domínio T/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Apoptose , Pontos de Checagem do Ciclo Celular , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptores de Interleucina-15/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Baço/citologia , Baço/imunologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...